Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Clin Epigenetics ; 16(1): 53, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589929

RESUMO

BACKGROUND: The study of biological age acceleration may help identify at-risk individuals and reduce the rising global burden of age-related diseases. Using DNA methylation (DNAm) clocks, we investigated biological aging in schizophrenia (SCZ), a mental illness that is associated with an increased prevalence of age-related disabilities and morbidities. In a whole blood DNAm sample of 1090 SCZ cases and 1206 controls across four European cohorts, we performed a meta-analysis of differential aging using three DNAm clocks (i.e., Hannum, Horvath, and Levine). To dissect how DNAm aging contributes to SCZ, we integrated information on duration of illness and SCZ polygenic risk, as well as stratified our analyses by chronological age and biological sex. RESULTS: We found that blood-based DNAm aging is significantly altered in SCZ independent from duration of the illness since onset. We observed sex-specific and nonlinear age effects that differed between clocks and point to possible distinct age windows of altered aging in SCZ. Most notably, intrinsic cellular age (Horvath clock) is decelerated in SCZ cases in young adulthood, while phenotypic age (Levine clock) is accelerated in later adulthood compared to controls. Accelerated phenotypic aging was most pronounced in women with SCZ carrying a high polygenic burden with an age acceleration of + 3.82 years (CI 2.02-5.61, P = 1.1E-03). Phenotypic aging and SCZ polygenic risk contributed additively to the illness and together explained up to 14.38% of the variance in disease status. CONCLUSIONS: Our study contributes to the growing body of evidence of altered DNAm aging in SCZ and points to intrinsic age deceleration in younger adulthood and phenotypic age acceleration in later adulthood in SCZ. Since increased phenotypic age is associated with increased risk of all-cause mortality, our findings indicate that specific and identifiable patient groups are at increased mortality risk as measured by the Levine clock. Our study did not find that DNAm aging could be explained by the duration of illness of patients, but we did observe age- and sex-specific effects that warrant further investigation. Finally, our results show that combining genetic and epigenetic predictors can improve predictions of disease outcomes and may help with disease management in schizophrenia.


Assuntos
Metilação de DNA , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Envelhecimento/genética , Senescência Celular , Epigênese Genética , Esquizofrenia/genética
2.
BMC Biol ; 22(1): 17, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273288

RESUMO

BACKGROUND: Due to interindividual variation in the cellular composition of the human cortex, it is essential that covariates that capture these differences are included in epigenome-wide association studies using bulk tissue. As experimentally derived cell counts are often unavailable, computational solutions have been adopted to estimate the proportion of different cell types using DNA methylation data. Here, we validate and profile the use of an expanded reference DNA methylation dataset incorporating two neuronal and three glial cell subtypes for quantifying the cellular composition of the human cortex. RESULTS: We tested eight reference panels containing different combinations of neuronal- and glial cell types and characterised their performance in deconvoluting cell proportions from computationally reconstructed or empirically derived human cortex DNA methylation data. Our analyses demonstrate that while these novel brain deconvolution models produce accurate estimates of cellular proportions from profiles generated on postnatal human cortex samples, they are not appropriate for the use in prenatal cortex or cerebellum tissue samples. Applying our models to an extensive collection of empirical datasets, we show that glial cells are twice as abundant as neuronal cells in the human cortex and identify significant associations between increased Alzheimer's disease neuropathology and the proportion of specific cell types including a decrease in NeuNNeg/SOX10Neg nuclei and an increase of NeuNNeg/SOX10Pos nuclei. CONCLUSIONS: Our novel deconvolution models produce accurate estimates for cell proportions in the human cortex. These models are available as a resource to the community enabling the control of cellular heterogeneity in epigenetic studies of brain disorders performed on bulk cortex tissue.


Assuntos
Metilação de DNA , Epigênese Genética , Feminino , Gravidez , Recém-Nascido , Humanos , Neuroglia , Córtex Cerebral , Neurônios/metabolismo
4.
Acta Neuropathol ; 146(2): 283-299, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37286732

RESUMO

In the progressive phase of multiple sclerosis (MS), the hampered differentiation capacity of oligodendrocyte precursor cells (OPCs) eventually results in remyelination failure. We have previously shown that DNA methylation of Id2/Id4 is highly involved in OPC differentiation and remyelination. In this study, we took an unbiased approach by determining genome-wide DNA methylation patterns within chronically demyelinated MS lesions and investigated how certain epigenetic signatures relate to OPC differentiation capacity. We compared genome-wide DNA methylation and transcriptional profiles between chronically demyelinated MS lesions and matched normal-appearing white matter (NAWM), making use of post-mortem brain tissue (n = 9/group). DNA methylation differences that inversely correlated with mRNA expression of their corresponding genes were validated for their cell-type specificity in laser-captured OPCs using pyrosequencing. The CRISPR-dCas9-DNMT3a/TET1 system was used to epigenetically edit human-iPSC-derived oligodendrocytes to assess the effect on cellular differentiation. Our data show hypermethylation of CpGs within genes that cluster in gene ontologies related to myelination and axon ensheathment. Cell type-specific validation indicates a region-dependent hypermethylation of MBP, encoding for myelin basic protein, in OPCs obtained from white matter lesions compared to NAWM-derived OPCs. By altering the DNA methylation state of specific CpGs within the promotor region of MBP, using epigenetic editing, we show that cellular differentiation and myelination can be bidirectionally manipulated using the CRISPR-dCas9-DNMT3a/TET1 system in vitro. Our data indicate that OPCs within chronically demyelinated MS lesions acquire an inhibitory phenotype, which translates into hypermethylation of crucial myelination-related genes. Altering the epigenetic status of MBP can restore the differentiation capacity of OPCs and possibly boost (re)myelination.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Epigenômica , Transcriptoma , Oligodendroglia/metabolismo , Diferenciação Celular , Metilação de DNA , Bainha de Mielina/patologia , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/farmacologia , Proteínas Proto-Oncogênicas
5.
BMC Bioinformatics ; 24(1): 178, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127563

RESUMO

BACKGROUND: The field of epigenomics holds great promise in understanding and treating disease with advances in machine learning (ML) and artificial intelligence being vitally important in this pursuit. Increasingly, research now utilises DNA methylation measures at cytosine-guanine dinucleotides (CpG) to detect disease and estimate biological traits such as aging. Given the challenge of high dimensionality of DNA methylation data, feature-selection techniques are commonly employed to reduce dimensionality and identify the most important subset of features. In this study, our aim was to test and compare a range of feature-selection methods and ML algorithms in the development of a novel DNA methylation-based telomere length (TL) estimator. We utilised both nested cross-validation and two independent test sets for the comparisons. RESULTS: We found that principal component analysis in advance of elastic net regression led to the overall best performing estimator when evaluated using a nested cross-validation analysis and two independent test cohorts. This approach achieved a correlation between estimated and actual TL of 0.295 (83.4% CI [0.201, 0.384]) on the EXTEND test data set. Contrastingly, the baseline model of elastic net regression with no prior feature reduction stage performed less well in general-suggesting a prior feature-selection stage may have important utility. A previously developed TL estimator, DNAmTL, achieved a correlation of 0.216 (83.4% CI [0.118, 0.310]) on the EXTEND data. Additionally, we observed that different DNA methylation-based TL estimators, which have few common CpGs, are associated with many of the same biological entities. CONCLUSIONS: The variance in performance across tested approaches shows that estimators are sensitive to data set heterogeneity and the development of an optimal DNA methylation-based estimator should benefit from the robust methodological approach used in this study. Moreover, our methodology which utilises a range of feature-selection approaches and ML algorithms could be applied to other biological markers and disease phenotypes, to examine their relationship with DNA methylation and predictive value.


Assuntos
Metilação de DNA , Epigenômica , Homeostase do Telômero , Algoritmos , Epigenômica/métodos , Análise de Regressão , Aprendizado de Máquina , Humanos
6.
Mol Psychiatry ; 28(5): 2095-2106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37062770

RESUMO

ABTRACT: Studies conducted in psychotic disorders have shown that DNA-methylation (DNAm) is sensitive to the impact of Childhood Adversity (CA). However, whether it mediates the association between CA and psychosis is yet to be explored. Epigenome wide association studies (EWAS) using the Illumina Infinium-Methylation EPIC array in peripheral blood tissue from 366 First-episode of psychosis and 517 healthy controls was performed. Adversity scores were created for abuse, neglect and composite adversity with the Childhood Trauma Questionnaire (CTQ). Regressions examining (I) CTQ scores with psychosis; (II) with DNAm EWAS level and (III) between DNAm and caseness, adjusted for a variety of confounders were conducted. Divide-Aggregate Composite-null Test for the composite null-hypothesis of no mediation effect was conducted. Enrichment analyses were conducted with missMethyl package and the KEGG database. Our results show that CA was associated with psychosis (Composite: OR = 1.68; p = <0.001; abuse: OR = 2.16; p < 0.001; neglect: OR = 2.27; p = <0.001). None of the CpG sites significantly mediated the adversity-psychosis association after Bonferroni correction (p < 8.1 × 10-8). However, 28, 34 and 29 differentially methylated probes associated with 21, 27, 20 genes passed a less stringent discovery threshold (p < 5 × 10-5) for composite, abuse and neglect respectively, with a lack of overlap between abuse and neglect. These included genes previously associated to psychosis in EWAS studies, such as PANK1, SPEG TBKBP1, TSNARE1 or H2R. Downstream gene ontology analyses did not reveal any biological pathways that survived false discovery rate correction. Although at a non-significant level, DNAm changes in genes previously associated with schizophrenia in EWAS studies may mediate the CA-psychosis association. These results and associated involved processes such as mitochondrial or histaminergic disfunction, immunity or neural signalling requires replication in well powered samples. The lack of overlap between mediating genes associated with abuse and neglect suggests differential biological trajectories linking CA subtypes and psychosis.

7.
Epigenetics ; 18(1): 2137659, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36539387

RESUMO

The majority of epigenetic epidemiology studies to date have generated genome-wide profiles from bulk tissues (e.g., whole blood) however these are vulnerable to confounding from variation in cellular composition. Proxies for cellular composition can be mathematically derived from the bulk tissue profiles using a deconvolution algorithm; however, there is no method to assess the validity of these estimates for a dataset where the true cellular proportions are unknown. In this study, we describe, validate and characterize a sample level accuracy metric for derived cellular heterogeneity variables. The CETYGO score captures the deviation between a sample's DNA methylation profile and its expected profile given the estimated cellular proportions and cell type reference profiles. We demonstrate that the CETYGO score consistently distinguishes inaccurate and incomplete deconvolutions when applied to reconstructed whole blood profiles. By applying our novel metric to >6,300 empirical whole blood profiles, we find that estimating accurate cellular composition is influenced by both technical and biological variation. In particular, we show that when using a common reference panel for whole blood, less accurate estimates are generated for females, neonates, older individuals and smokers. Our results highlight the utility of a metric to assess the accuracy of cellular deconvolution, and describe how it can enhance studies of DNA methylation that are reliant on statistical proxies for cellular heterogeneity. To facilitate incorporating our methodology into existing pipelines, we have made it freely available as an R package (https://github.com/ds420/CETYGO).


Assuntos
Algoritmos , Metilação de DNA , Feminino , Recém-Nascido , Humanos , Incerteza , Biologia Computacional/métodos , Epigenômica
8.
Nat Commun ; 13(1): 5620, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153390

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by the progressive accumulation of amyloid-beta and neurofibrillary tangles of tau in the neocortex. We profiled DNA methylation in two regions of the cortex from 631 donors, performing an epigenome-wide association study of multiple measures of AD neuropathology. We meta-analyzed our results with those from previous studies of DNA methylation in AD cortex (total n = 2013 donors), identifying 334 cortical differentially methylated positions (DMPs) associated with AD pathology including methylomic variation at loci not previously implicated in dementia. We subsequently profiled DNA methylation in NeuN+ (neuronal-enriched), SOX10+ (oligodendrocyte-enriched) and NeuN-/SOX10- (microglia- and astrocyte-enriched) nuclei, finding that the majority of DMPs identified in 'bulk' cortex tissue reflect DNA methylation differences occurring in non-neuronal cells. Our study highlights the power of utilizing multiple measures of neuropathology to identify epigenetic signatures of AD and the importance of characterizing disease-associated variation in purified cell-types.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Metilação de DNA/genética , Epigênese Genética , Humanos , Doenças Neurodegenerativas/genética , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo
9.
Am J Med Genet B Neuropsychiatr Genet ; 189(5): 151-162, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35719055

RESUMO

Genome-wide association studies (GWAS) have identified multiple genomic regions associated with schizophrenia, although many variants reside in noncoding regions characterized by high linkage disequilibrium (LD) making the elucidation of molecular mechanisms challenging. A genomic region on chromosome 10q24 has been consistently associated with schizophrenia with risk attributed to the AS3MT gene. Although AS3MT is hypothesized to play a role in neuronal development and differentiation, work to fully understand the function of this gene has been limited. In this study we explored the function of AS3MT using a neuronal cell line (SH-SY5Y). We confirm previous findings of isoform specific expression of AS3MT during SH-SY5Y differentiation toward neuronal fates. Using CRISPR-Cas9 gene editing we generated AS3MT knockout SH-SY5Y cell lines and used RNA-seq to identify significant changes in gene expression in pathways associated with neuronal development, inflammation, extracellular matrix formation, and RNA processing, including dysregulation of other genes strongly implicated in schizophrenia. We did not observe any morphological changes in cell size and neurite length following neuronal differentiation and MAP2 immunocytochemistry. These results provide novel insights into the potential role of AS3MT in brain development and identify pathways through which genetic variation in this region may confer risk for schizophrenia.


Assuntos
Neuroblastoma , Esquizofrenia , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação/genética , Metiltransferases/genética , Neurogênese/genética , Esquizofrenia/genética
10.
Psychol Med ; 52(9): 1645-1665, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35193719

RESUMO

A significant proportion of the global burden of disease can be attributed to mental illness. Despite important advances in identifying risk factors for mental health conditions, the biological processing underlying causal pathways to disease onset remain poorly understood. This represents a limitation to implement effective prevention and the development of novel pharmacological treatments. Epigenetic mechanisms have emerged as mediators of environmental and genetic risk factors which might play a role in disease onset, including childhood adversity (CA) and cannabis use (CU). Particularly, human research exploring DNA methylation has provided new and promising insights into the role of biological pathways implicated in the aetio-pathogenesis of psychiatric conditions, including: monoaminergic (Serotonin and Dopamine), GABAergic, glutamatergic, neurogenesis, inflammatory and immune response and oxidative stress. While these epigenetic changes have been often studied as disease-specific, similarly to the investigation of environmental risk factors, they are often transdiagnostic. Therefore, we aim to review the existing literature on DNA methylation from human studies of psychiatric diseases (i) to identify epigenetic modifications mapping onto biological pathways either transdiagnostically or specifically related to psychiatric diseases such as Eating Disorders, Post-traumatic Stress Disorder, Bipolar and Psychotic Disorder, Depression, Autism Spectrum Disorder and Anxiety Disorder, and (ii) to investigate a convergence between some of these epigenetic modifications and the exposure to known risk factors for psychiatric disorders such as CA and CU, as well as to other epigenetic confounders in psychiatry research.


Assuntos
Transtorno do Espectro Autista , Transtornos Mentais , Transtornos Psicóticos , Transtornos de Estresse Pós-Traumáticos , Transtorno do Espectro Autista/genética , Metilação de DNA/genética , Epigênese Genética , Humanos , Transtornos Mentais/genética , Transtornos Psicóticos/genética , Transtornos de Estresse Pós-Traumáticos/genética
11.
Front Endocrinol (Lausanne) ; 13: 1059120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726473

RESUMO

Background: There is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors. Results: We show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study. Conclusions: We have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction.


Assuntos
Metilação de DNA , DNA Mitocondrial , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Encéfalo , Genes Mitocondriais
13.
Cell Rep ; 37(7): 110022, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788620

RESUMO

Alternative splicing is a post-transcriptional regulatory mechanism producing distinct mRNA molecules from a single pre-mRNA with a prominent role in the development and function of the central nervous system. We used long-read isoform sequencing to generate full-length transcript sequences in the human and mouse cortex. We identify novel transcripts not present in existing genome annotations, including transcripts mapping to putative novel (unannotated) genes and fusion transcripts incorporating exons from multiple genes. Global patterns of transcript diversity are similar between human and mouse cortex, although certain genes are characterized by striking differences between species. We also identify developmental changes in alternative splicing, with differential transcript usage between human fetal and adult cortex. Our data confirm the importance of alternative splicing in the cortex, dramatically increasing transcriptional diversity and representing an important mechanism underpinning gene regulation in the brain. We provide transcript-level data for human and mouse cortex as a resource to the scientific community.


Assuntos
Córtex Cerebral/metabolismo , Isoformas de Proteínas/genética , Transcriptoma/genética , Processamento Alternativo/genética , Animais , Encéfalo/metabolismo , Córtex Cerebral/fisiologia , Éxons/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Isoformas de Proteínas/metabolismo , Precursores de RNA/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos
14.
Am J Med Genet B Neuropsychiatr Genet ; 186(6): 376-388, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34632689

RESUMO

Common genetic variation appears to largely influence risk for neuropsychiatric disorders through effects on gene regulation. It is therefore possible to shed light on the biology of these conditions by testing for enrichment of associated genetic variation within regulatory genomic regions operating in specific tissues or cell types. Here, we have used the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) to map open chromatin (an index of active regulatory genomic regions) in bulk tissue, NeuN+ and NeuN- nuclei from the prenatal human frontal cortex, and tested enrichment of single-nucleotide polymorphism (SNP) heritability for five neuropsychiatric disorders (autism spectrum disorder, attention deficit hyperactivity disorder [ADHD], bipolar disorder, major depressive disorder, and schizophrenia) within these regions. We observed significant enrichment of SNP heritability for ADHD, major depressive disorder, and schizophrenia within open chromatin regions (OCRs) mapped in bulk fetal frontal cortex, and for all five tested neuropsychiatric conditions when we restricted these sites to those overlapping histone modifications indicative of enhancers (H3K4me1) or promoters (H3K4me3) in fetal brain. SNP heritability for neuropsychiatric disorders was significantly enriched in OCRs identified in fetal frontal cortex NeuN- as well as NeuN+ nuclei overlapping fetal brain H3K4me1 or H3K4me3 sites. We additionally demonstrate the utility of our mapped OCRs for prioritizing potentially functional SNPs at genome-wide significant risk loci for neuropsychiatric disorders. Our data provide evidence for an early neurodevelopmental component to a range of neuropsychiatric conditions and highlight an important role for regulatory genomic regions active within both NeuN+ and NeuN- cells of the prenatal brain.


Assuntos
Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Depressivo Maior , Transtorno Bipolar/genética , Feminino , Lobo Frontal , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Gravidez
15.
Front Endocrinol (Lausanne) ; 12: 671724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122346

RESUMO

Aims/hypothesis: Recurrent hypoglycaemia (RH) is a major side-effect of intensive insulin therapy for people with diabetes. Changes in hypoglycaemia sensing by the brain contribute to the development of impaired counterregulatory responses to and awareness of hypoglycaemia. Little is known about the intrinsic changes in human astrocytes in response to acute and recurrent low glucose (RLG) exposure. Methods: Human primary astrocytes (HPA) were exposed to zero, one, three or four bouts of low glucose (0.1 mmol/l) for three hours per day for four days to mimic RH. On the fourth day, DNA and RNA were collected. Differential gene expression and ontology analyses were performed using DESeq2 and GOseq, respectively. DNA methylation was assessed using the Infinium MethylationEPIC BeadChip platform. Results: 24 differentially expressed genes (DEGs) were detected (after correction for multiple comparisons). One bout of low glucose exposure had the largest effect on gene expression. Pathway analyses revealed that endoplasmic-reticulum (ER) stress-related genes such as HSPA5, XBP1, and MANF, involved in the unfolded protein response (UPR), were all significantly increased following low glucose (LG) exposure, which was diminished following RLG. There was little correlation between differentially methylated positions and changes in gene expression yet the number of bouts of LG exposure produced distinct methylation signatures. Conclusions/interpretation: These data suggest that exposure of human astrocytes to transient LG triggers activation of genes involved in the UPR linked to endoplasmic reticulum (ER) stress. Following RLG, the activation of UPR related genes was diminished, suggesting attenuated ER stress. This may be a consequence of a successful metabolic adaptation, as previously reported, that better preserves intracellular energy levels and a reduced necessity for the UPR.


Assuntos
Astrócitos/metabolismo , Glucose/administração & dosagem , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos
16.
Mol Brain ; 14(1): 98, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174924

RESUMO

Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases.


Assuntos
Relógios Biológicos/genética , Encéfalo/embriologia , Senescência Celular , Epigênese Genética , Feto/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Neurônios/citologia , Senescência Celular/genética , Metilação de DNA/genética , Bases de Dados Genéticas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Gravidez , Reprodutibilidade dos Testes
17.
Front Psychiatry ; 12: 687615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177670

RESUMO

Ayahuasca is a natural psychoactive brew, used in traditional ceremonies in the Amazon basin. Recent research has indicated that ayahuasca is pharmacologically safe and its use may be positively associated with improvements in psychiatric symptoms. The mechanistic effects of ayahuasca are yet to be fully established. In this prospective naturalistic study, 63 self-selected participants took part in ayahuasca ceremonies at a retreat centre in the Peruvian Amazon. Participants undertook the Beck Depression Inventory (BDI-II), State-Trait Anxiety Inventory (STAI), Self-compassion Scale (SCS), Clinical Outcomes in Routine Evaluation-Outcome Measure (CORE-OM), as well as secondary measures, pre- and post-retreat and at 6-months. Participants also provided saliva samples for pre/post epigenetic analysis. Overall, a statistically significant decrease in BDI-II (13.9 vs. 6.1, p < 0.001), STAI (44.4 vs. 34.3 p < 0.001) scores, and CORE-OM scores were observed (37.3 vs. 22.3 p < 0.001) at post-retreat, as well as a concurrent increase in SCS (3.1 vs. 3.6, p < 0.001). Psychometric improvements were sustained, and on some measures values further decreased at 6-month follow-up, suggesting a potential for lasting therapeutic effects. Changes in memory valence were linked to the observed psychometric improvements. Epigenetic findings were equivocal, but indicated that further research in candidate genes, such as sigma non-opioid intracellular receptor 1 (SIGMAR1), is warranted. This data adds to the literature supporting ayahuasca's possible positive impact on mental health when conducted in a ceremonial context. Further investigation into clinical samples, as well as greater analyses into the mechanistic action of ayahuasca is advised.

18.
Elife ; 102021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33646943

RESUMO

We performed a systematic analysis of blood DNA methylation profiles from 4483 participants from seven independent cohorts identifying differentially methylated positions (DMPs) associated with psychosis, schizophrenia, and treatment-resistant schizophrenia. Psychosis cases were characterized by significant differences in measures of blood cell proportions and elevated smoking exposure derived from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1048 DMPs associated with schizophrenia, with evidence of colocalization to regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA methylation differences were only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia.


Assuntos
Metilação de DNA , Epigenoma , Transtornos Psicóticos/fisiopatologia , Esquizofrenia Resistente ao Tratamento/fisiopatologia , Adulto , Idoso , Inglaterra , Feminino , Humanos , Irlanda , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/genética , Esquizofrenia Resistente ao Tratamento/genética , Escócia , Suécia , Adulto Jovem
19.
Brain Pathol ; 30(5): 992-1004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32654206

RESUMO

Recent studies have highlighted a potential role of genetic and epigenetic variation in the development of Alzheimer's disease. Application of the CRISPR-Cas genome-editing platform has enabled investigation of the functional impact that Alzheimer's disease-associated gene mutations have on gene expression. Moreover, recent advances in the technology have led to the generation of CRISPR-Cas-based tools that allow for high-throughput interrogation of different risk variants to elucidate the interplay between genomic regulatory features, epigenetic modifications, and chromatin structure. In this review, we examine the various iterations of the CRISPR-Cas system and their potential application for exploring the complex interactions and disruptions in gene regulatory circuits that contribute to Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Edição de Genes/métodos , Doença de Alzheimer/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Disfunção Cognitiva , Epigênese Genética/genética , Epigenômica/métodos , Predisposição Genética para Doença/genética , Genômica/métodos , Humanos , Mutação/genética , Doenças Neurodegenerativas/genética , Tecnologia
20.
Transl Psychiatry ; 10(1): 69, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075955

RESUMO

Suicide is the second leading cause of death globally among young people representing a significant global health burden. Although the molecular correlates of suicide remains poorly understood, it has been hypothesised that epigenomic processes may play a role. The objective of this study was to identify suicide-associated DNA methylation changes in the human brain by utilising previously published and unpublished methylomic datasets. We analysed prefrontal cortex (PFC, n = 211) and cerebellum (CER, n = 114) DNA methylation profiles from suicide completers and non-psychiatric, sudden-death controls, meta-analysing data from independent cohorts for each brain region separately. We report evidence for altered DNA methylation at several genetic loci in suicide cases compared to controls in both brain regions with suicide-associated differentially methylated positions enriched among functional pathways relevant to psychiatric phenotypes and suicidality, including nervous system development (PFC) and regulation of long-term synaptic depression (CER). In addition, we examined the functional consequences of variable DNA methylation within a PFC suicide-associated differentially methylated region (PSORS1C3 DMR) using a dual luciferase assay and examined expression of nearby genes. DNA methylation within this region was associated with decreased expression of firefly luciferase but was not associated with expression of nearby genes, PSORS1C3 and POU5F1. Our data suggest that suicide is associated with DNA methylation, offering novel insights into the molecular pathology associated with suicidality.


Assuntos
Metilação de DNA , Suicídio , Adolescente , Encéfalo , Epigênese Genética , Epigenômica , Genoma , Humanos , Proteínas , RNA Longo não Codificante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...